3 resultados para Microbial shelf life

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salt use in meat products is changing. Consumers desire sea salt which may also contain trace metals and the government is demanding a reduction in sodium. Therefore a need exists to understand how varying impurity levels in salt affect meat quality. This study evaluated the effects of various salt preparations on lipid oxidation, sensory characteristics, protein extractability, and bind strength of ground turkey and pork. This study was a completely randomized design with 5 treatment groups and 6 replications in 2 species. Ground, turkey and pork meat was formulated into one hundred and fifty gram patties with sodium chloride (1%) containing varying amounts of metal impurities (copper, iron, and manganese). Samples were randomly assigned to frozen storage periods of 0, 3, 6, and 9 weeks. After storage, samples were packaged in PVC overwrap and stored under retail display for 5 days. Samples were evaluated for proximate analysis to ensure the fat content was similar for all of the starting material.Thiobarbituric acid reactive substances (TBARS) were determined on raw and cooked samples to evaluate lipid oxidation. A trained six member sensory panel evaluated the samples at each storage period for saltiness, off flavor, and oxidized odor. Break strength was conducted using a Texture Analyzer and compared with salt soluble proteins (increasing salt concentrations) to evaluate protein extractability characteristics. Statistical analyses were conducted using the MIXED procedure of SAS within repeated measures over time where appropriate. No significant differences were observed among the salt treatments for raw and cooked TBARS when the control group was removed (P>0.05). Sensory panelists detected increased levels of off flavor and oxidized odor over the entire storage duration. Less force was required to break the patties from the control group when compared with the salt treatments (P<0.05). As salt concentration increased salt-soluble protein extraction increased, but there was no effect of salt type. Overall, no meaningful statistical differences among the various salt treatments were observed for all of the parameters evaluated for turkey and pork. Salt at a 1% inclusion rate containing varying levels of copper, iron, and manganese impurities in ground turkey thigh meat and ground pork served as a prooxidant. However, if a meat processor uses a 1% inclusion rate of salt in turkey and pork regardless of impurities included, it is unlikely that differences in shelf life or protein functionality would be observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) have attracted significant attention during the past decade due to their high porosity, tunable structures, and controllable surface functionalities. Therefore many applications have been proposed for MOFs. All of them however are still in their infancy stage and have not yet been brought into the market place. In this thesis, the background of the MOF area is first briefly introduced. The main components and the motifs of designing MOFs are summarized, followed by their synthesis and postsynthetic modification methods. Several promising application areas of MOFs including gas storage and separation, catalysis and sensing are reviewed. The current status of commercialization of MOFs as new chemical products is also summarized. Examples of the design and synthesis of two new MOF structures Eu(4,4′,4′′,4′′′-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid))·2H2O∙xDMF and Zn4O(azobenzene-4,4’-dicarboxylic acid)3∙xNMP are described. The first one contains free-base porphyrin centers and the second one has azobenzene components. Although the structures were synthesized as designed, unfortunately they did not possess the expected properties. The research idea to use MOFs as template materials to synthesize porous polymers is introduced. Several methods are discussed to grow PMMA into IRMOF-1 (Zn4O(benzene-1,4-dicarboxylate)3, IR stands for isoreticular) structure. High concentration of the monomers resulted in PMMA shell after MOF digestion while with low concentration of monomers no PMMA was left after digestion due to the small iii molecular weight. During the study of this chapter, Kitagawa and co-workers published several papers on the same topic, so this part of the research was terminated thereafter. Many MOFs are reported to be unstable in air due to the water molecules in air which greatly limited their applications. By incorporating a number of water repelling functional groups such as trifluoromethoxy group and methyl groups in the frameworks, the water stability of MOFs are shown to be significantly enhanced. Several MOFs inculding Banasorb-22 (Zn4O(2-trifluoromethoxybenzene-1,4-dicarboxylate)3), Banasorb-24 (Zn4O(2, 5-dimethylbenzene-1,4-dicarboxylate)3) and Banasorb-30 (Zn4O(2-methylbenzene-1,4-dicarboxylate)3) were synthesized and proved to have isostructures with IRMOF-1. Banasorb-22 was stable in boiling water steam for one week and Banasorb-30’s shelf life was over 10 months under ambient condition. For comparison, IRMOF-1’s structure collapses in air after a few hours to several days. Although MOF is a very popular research area nowadays, only a few studies have been reported on the mechanical properties of MOFs. Many of MOF’s applications involve high pressure conditions, so it is important to understand the behavior of MOFs under elivated pressures. The mechanical properties of IRMOF-1 and a new MOF structure Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 were studied using diamond anvil cells at Advanced Photon Source. IRMOF-1 experienced an irriversible phase transtion to a nonporous phase followed by amorphization under high pressure. Eu2(C12N2O4H6)3(DEF)0.87(H2O)2.13 showed reversible compression under pressure up to 9.08GPa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.